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Abstract. The solution of the DGLAP evolution equation for the twist-3 gluon operators is obtained in
the double logarithmic approximation of QCD perturbation theory. The method used for the solution is
similar to the reggeon field theory. The asymptotics of the twist-3 parton correlation function for small
Bjorken variables xB is found.

1 Introduction

The growth of the structure function f(xB, Q2) in the re-
gion of small Bjorken variables xB makes it necessary to
take into account the high twist contribution. According
to the operator product expansion the local operator of
spin J contributes to the number J Mellin moment of the
structure function f(xB, Q2). The Q2-dependence of the
operators is perturbatively determined by the evolution
equation collecting in the leading order (LLA) the terms
of the form (αS lnQ2/µ2)n. The asymptotic behavior for
xB → 0 is governed by the rightmost singularity of the
anomalous dimension in the variable J continued to the
complex plane. However, the calculation of the anomalous
dimension becomes more complicated for twists N ≥ 3
because of the large number of local operators.

There is another approach proposed in [1] and based
on the relation of the small-xB behavior of the structure
function and the BFKL equation summing up the powers
(αS ln 1/xB)n. It enables one to find the twist-2 anomalous
dimension near the singularity position J → 1 for the
leading and next to leadings orders in terms of lnQ2. The
situation is also more involved for the higher twists, N ≥ 3,
since one has to solve the equation for N reggeized gluons [2]
and then to extract from it the anomalous dimension.

2 Evolution equation
for the twist-3 quasipartonic operators in DLA

Here we consider the evolution equation for the twist-
3 quasipartonic operators in double logarithmic approx-
imation (DLA), which collects the powers of the product
αS lnQ2/µ2 ln 1/x. Quasipartonic operators form a closed
set of high twist operators allowing for an interpretation in
terms of the parton model [5]. They are responsible for the
small-xB asymptotics of the structure function [3, 4]. The

matrix elements of quasipartonic operators depend only on
the fraction xi of the partons momenta along the hadron
momentum p (p2 � 0). The pure gluon channel will be
studied below as dominating in the small-xB region. We
shall take the quasipartonic operators, which, in the ax-
ial gauge nµAµ = 0 with a light-like vector n dual to the
hadron momentum p, have the general form

O m1,m2,m3
µ1,µ2,µ3

= Γ abc
µ1µ′

1,µ2µ′
2,µ3µ′

3

(
(i∂)m1Aa

µ′
1

)(
(i∂)m2Ab

µ′
2

)(
(i∂)m3Ac

µ′
3

)
,

where mi are positive integers, Γ is a color and Lorentz
tensor, the particular form of which will not be important
in what follows; ∂ = nµ∂µ. The matrix element over a
hadron state can be expressed as

〈h|O m1,m2,m3
µ1,µ2,µ3

|h〉 =
∫

dβ1dβ2dβ3 Nabc
λ1λ2λ3

(β1, β2, β3)

× O abc
λ1µ1,λ2µ2,λ3µ3

β m1
1 β m2

2 β m3
3 ,

O abc
λ1µ1,λ2µ2,λ3µ3

= Γ abc
µ1µ′

1,µ2µ′
2,µ3µ′

3
ελ1

µ′
1
ελ2

µ′
2
ελ3

µ′
3
,

where ελ
µ is the gluon polarization vector. The parton cor-

relation function Nabc
λ1λ2λ3

(x1, x2, x3) has the meaning of a
hadron wavefunction integrated over the partons’ trans-
verse momenta, the greatest transverse momentum being
of the order Q2.

The evolution equation generalizing the twist-2DGLAP
equation is derived in [5]. It has the form of an N -particle
one dimensional Schrödinger-type equation with pairwise
interaction between the gluons,

Q2 ∂

∂Q2 N
a1,...,ai,aj ,...,aN

λ1,...,λi,λj ,...,λN
(Q2, x1, . . . , xN )

=
∑
i<j

∫
dβidβj δ(xi + xj − βi − βj) (1)



100 A.G. Shuvaev: Solution of twist-3 evolution equation in double logarithmic approximation in QCD

× Φ
aiaj ,a′

ia
′
j

λiλj ,λ′
iλ

′
j
(xi, xj ; βi, βj)

× N
a1,...,a′

i,a
′
j ,...,aN

λ1,...,λ′
i,λ

′
j ,...,λN

(Q2, x1, . . . , βi, . . . , βj , . . . , xN ).

This equation sums up in the leading lnQ2 order the
ladder-type diagrams. For the twist N case they comprise
the local operator vertex and N gluons in the t-channel
interacting through all possible s-channel gluons rungs.The
integrals in each ladder cell are ordered in LLA such that
the transverse momentum in the above cell plays the role
of an ultraviolet cut-off for the one below. The Q2 value,
being the greatest momentum in the upper loop attached
to the local operator vertex, is the ultraviolet cut-off for
the whole diagram. The evolution equation is obtained
by taking the derivative of the diagrams with respect to
log Q2. The kernel Φ

aiaj ,a′
ia

′
j

λiλj ,λ′
iλ

′
j
(xi, xj ; βi, βj) is determined

by the logarithmic part of the one-loop integral over the
transverse parton momentum k⊥.

Generally the longitudinal momenta xi are not ordered
in LLA, but they have to be ordered in DLA to provide
a large logarithm for each ladder cell. The xi variables in-
crease from the smallest values at the local operator vertex
to order of unity ones in the lower part of a diagram. In
such a kinematics the logarithmic divergencies that occur
in every loop when βi → 0 are cut from below by the lon-
gitudinal momentum in the upper cell. Thus DLA implies
that the loop integrals in the evolution equation (1) are
limited by the condition

βi, βj � xi, xj , (2)

which means that the momenta below the s-channel rung
(x) and above it (β) are of different orders of magnitude.
The most singular contribution comes in (1) from the region
where both βi and βj tend to zero. Momentum conservation
allows this only if

xi + xj � βi, βj , (3)

that is, xi ≈ −xj with logarithmic accuracy. Hereafter it
is convenient to assume the momenta directed upward to
be positive, and those directed downward to be negative.

In the logarithmic domain the kernel of the evolution
equation in DLA can easily be obtained by keeping the
terms most singular in β in the gluon–gluon kernel,

Φa,b,c,d
λ1,λ2,λ′

1,λ′
2
(x1, x2; β1, β2)

= 2δλ1λ2δλ′
1,λ′

2
ifacgif bgd x1δ(x1 − x2)

1
β1β2

. (4)

Here λi, λ
′
i are the two dimensional transverse helicity in-

dices, the fabc are the structure constants of the SU(Nc)
group. The momenta x1, x2, are equal in DLA. They are
positive but have opposite directions; one of them is in-
coming from below, the other is outgoing. The low-scale
momenta β1,2 are not supposed to be equal in DLA since
the momentum transfer from below x1 − x2 is small only
compared to the large momenta x1,2 but is of the same
order as the low-scale ones.

All xi, βi momenta are supposed to be positive in the
DLA kernel (4); the sign is specified with an additional in-
dex σ = {+,−}. Thus each gluon in the structure function
is characterized by the color index a, helicity λ, momentum
value β and momentum direction σ. The interaction occurs
only between gluons with opposite σ.

There are two possible color structures for twist-3 op-
erators – the odderon-like one dabc and the gluon-like
one fabc. Both of them go through the equation result-
ing in an Nc/2 factor. This simplifies the color structure
of the correlation function, Nabc

λ1,λ2,λ3
= dabcFλ1,λ2,λ3 or

Nabc
λ1,λ2,λ3

= fabcFλ1,λ2,λ3 , and the action of the kernel can
be written as

H12Fλ1,σ1,λ2,σ2,λ3,σ3(x1, x2, x3)

=
1
4

α δσ1,−σ2 δλ1,λ2δλ′
1,λ′

2
x1 δ(x1 − x2) (5)

×
∫ x1

0

dβ1

β1

∫ x2

0

dβ2

β2

[
Fλ′

1,σ1,λ′
2,σ2,λ3,σ3(β1, β2, x3)

± Fλ′
2,σ2,λ′

1,σ1,λ3,σ3(β2, β1, x3)
]
,

α ≡ Nc
αS

π
,

and similarly for H23, H13. Two terms in the RHS (5)
represent the sum of the s- and u-channel diagrams (only
even momentum operators survive in this sum for the twist-
2 case).

3 Finding the Green function
by iterating the Bethe–Salpeter equation

Instead of direct solving of the evolution equation we adopt
here another approach similar to reggeon calculus and more
suitable to find the asymptotics of the structure function.
To this end we rewrite the formal solution of the evolution
equation with a given initial condition F0,

F
(
Q2) = eH log Q2/µ2

F0

through a Mellin transform as

F
(
Q2) =

∫
dν

2πi

(
Q2

µ2

)ν 1
ν

1
1 − 1

ν H
F0,

where the integral runs along the imaginary axis to the
right from all singularities. The equation

F (ν) = F0 +
1
ν

H F (ν) (6)

can be treated as the Bethe–Salpeter equation in the theory
described by the effective action

S =
∫

dx Φ∗
λσ(x) Φλσ(x)

+
1
4

α

ν

∫
dx x

dβ1

β1

dβ2

β2
Φ∗

λ1σ1
(x) θ(x − β1) Φλ2σ2(β1)
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Fig. 1. Two gluon ladder

× δλ1λ2δλ3λ4 [δσ1σ2δσ3σ4 ± δσ1σ4δσ2σ3 ] δσ2,−σ4

× Φ∗
λ3σ3

(x) θ(x − β2) Φλ4σ4(β2).

The solution to (6) is given by the convolution with the
Green function,

Fλ′
iσ

′
i
(ν, βi) =

∫
dxi ϕλiσi(xi) Gλiσi, λ′

iσ
′
i
(ν; xi, βi) (7)

calculated in the effective theory,

Gλiσi,λ′
iσ

′
i
(ν; xi, βi) =

3∏
i=1

〈Φλ′
iσ

′
i
(xi) Φ∗

λiσi
(βi)〉.

The initial hadron wavefunction ϕλiσi(xi) is to be taken
at the low Q2 scale. It cannot be found perturbatively, but
its precise formdoes not influence the large-Q2 asymptotics.
For definiteness we shall consider below the moments; that
is, we take

ϕ(xi) =
3∏

i=1

xni
i , (8)

with the integers ni ≥ 0.
We shall find the Green function by iterating the Bethe–

Salpeter equation. We start from the two gluon ladder, or
“reggeon”,whichwill be amainbuildingblock in the further
proceeding. It is schematically shown in Fig. 1, where the
solid lines denote the gluon. Iterations of the two-particle
kernel results in the matrix

ĝλ1 λ2, λ′
1 λ′

2
(x1, x2; β1, β2) (9)

=
1
2

δλ1λ2δλ′
1λ′

2

1
β1

1
β2

ĝ12(ν; x1, {β1, β2}) x1 δ(x1 − x2).

Here {β1, β2} ≡ max{β1, β2}, and the matrix gik acts on
the sign variables σi, σk as follows:

ĝik(ν; x, β) ≡ gσiσk,σ′
iσ

′
k
(ν; x, β)

=
(

I ± Pik

2
Aik

)
σiσk,σ′

iσ
′
k

g(ν; x, β),

where the operator Pik permutes the indices σi, σk, the ma-
trix Aik permits the interaction only between the partons
with opposite momentum signs,

(Aik)σiσk, σ′
iσ

′
k

= δσiσ′
i
δσkσ′

k
δσ′

i,−σ′
k
,

and

g(ν; x, β) =
∫

dj

2πi

(
β

x

)−j
α

2νj − α
. (10)

4 Double logarithmic twist-2
anomalous dimension

The expression (9) leads to the usual structure function in
the twist-2 case. Indeed, the general form of the twist-2 spin
J gluon operator (the F1 structure function) convoluted
with the gauge fixing vector n is

nµ1 . . . nµJ
Oµ1,...,µJ

= (i∂) Aν (i∂)J−1
Aν .

This results in the vertex

δλ1λ2β
m1
1 βm2

2 δ(β1 + β2),

with m1 = 1, m2 = J − 1. There is no momentum transfer
through the operator, and this is the reason for the mo-
mentum delta-function. This vertex should be integrated
with the ladder function (where α/2 is replaced with α
for the color singlet). The integration has to be done with
account of both signs of the β1,2 variables, which implies
the sum over (+−) and (−+) initial sign states. For the
(+−) final state, that is, for the positive x1, we get

M2(J) = − [
1 + (−1)J

]
δλ1λ2x

J
1 δ(x1 − x2)

×
∫

dj

2πi
α

ν(J − 1) − α

and the same for the (−+) state. Thus we have reproduced
the double logarithmic twist-2 anomalous dimension

γ2(J) =
α

J − 1

together with the selection rule allowing only for the even
J values.

5 Diagrams for the Green function in (7)

We consider the diagrams for the Green function occurring
in (7). The general sum of the three-gluon ladder diagrams
can be equivalently presented as a sum of two-gluon ladders
(“reggeons”) developing between each of the gluon pairs
accompaniedwith a third single gluon as is shown inFigs. 2–
4. By employing this representation all diagrams can be
summed up in a closed form. The Green function reads

Gtot
d,f =

∑
{i},{i′}

Gd,f (xi, σi, λi |βi′ , σi′ , λi′) , (11)

where the sum is taken over independent permutations of
the incoming and outgoing particles, while the functions
Gd,f stand for the diagrams with a fixed order of the exter-
nal lines. The symbols d and f label the Green functions for
the dabc and fabc color structures. The formula (11) implies
simultaneous permutations of all quantum numbers, that is
momenta, helicities and colors, which means symmetriza-
tion with respect to {xi, σi, λi} (or {βj , σ

′
j , λ

′
j}) pair for

the dabc tensor and antisymmetrization for the fabc tensor.
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′
1

�
�
�

��
��
��

�
�
�
(12)

��
β2, σ

′
2, λ

′
2

��x1, σ1, λ1 �� x2, σ2, λ2 x3, σ3, λ3

β3, σ
′
3, λ

′
3

Fig. 2. Diagram for the pair 12 coming from a finite number
of iterations

The effective diagrams constructed from the two-gluon
ladder and gluon line turns out to be rather simple to
calculate the Green function by the direct summation. The
result is presented by the sum of three contributions. Two
of them are degenerate in the sense that they come from
a finite number of iterations. The first one includes the
“reggeon” only once. There are three diagrams of this type
for three various gluon pairs combined into the ladder. One
of them, for the pair 12, is shown in Fig. 2. We have

G
(I)
d,f (xi, βi)(12)

=
1
2

δλ1λ2δλ3λ′
3
δλ′

1λ′
2

1
β1β2

ĝ12(ν; x1, {β1, β2})

× x1δ(x1 − x2)δ(x3 − β3) δσ3σ′
3
.

The others can be obtained by permutations of the indices
(123) → (231) and (123) → (132).

The second contribution arises from the diagram with
the two “reggeons”. Figure 3 presents the diagram where
the gluon pair 12 switches to the pair 23,

G
(II)
d,f (xi, βi)(23)(12) (12)

=
1
4

δλ2λ3δλ1λ′
3
δλ′

1λ′
2

1
β1β2β3

ĝ 23(ν; x1, {β1, β2})

× ĝ12(ν; x2, {x1, β3}) x2δ(x2 − x3).

The other five terms result in this case from (12) after
independent permutations (123) → (231) and (123) →
(132) of the upper and lower (in the sense of Fig. 3) indices
but excluding the equal ones. In other words, the sum
is taken over various ways to combine the incoming and
outgoing gluons in different two-particle ladders.

The contributions starting with the three “reggeons”
develop a regular series which can be written as

G
(III)
d,f (xi, βi)(12)(12)

��
β1, σ

′
1, λ

′
1

�
�
�

��
��
��

�
�
�
(12)

��
β2, σ

′
2, λ

′
2

�
�

�x1, σ1, λ1

�
�

�
�
�

��
��
��

�
�
�
(23)

�
�

�
β3, σ

′
3, λ

′
3

��x2, σ2, λ2 �� x3, σ3, λ3

Fig. 3. Diagram where the gluon pair 12 switches to the pair 23
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β3, σ
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��x1, σ1, λ1 �� x2, σ2, λ2

Fig. 4. Diagram corresponding either to the first term in (14)
or to all terms in (14) if the middle “reggeon” is replaced with
the full function Wd,f

=
1
4

δλ1λ2δλ3λ′
3
δλ′

1λ′
2

1
β1β2β3

ĝ12(ν; x1, x3) (13)

×
∫

dβ

β
Wd,f (x3, ν; {β3, β}) ĝ12(ν; β, {β1, β2}),

Wd,f (ν; x, β) (14)

=
1
2

ĝ(ν; x, β) +
1
4

∫
dβ′

β′ ĝ (ν; x, β′) ĝ (ν; β′, β) + . . .

Figure 4 shows the diagram corresponding either to the first
term in (14) or to all terms in (14) if the middle “reggeon”
is replaced with the full function Wd,f .

There are eight other terms besides (13), which can be
obtained from it by independent permutations (123) →
(231) and (123) → (132) of the upper and lower indices
in Fig. 4.

The Mellin transform (10) turns the convolutions over
β′ into the usual products, making the series (14) equivalent
to the purely matrix problem,

W =
1
2

α

νj
H +

(
1
2

α

νj
H

)2

+ . . . = H
1

2νj
α − H

, (15)

where the “reggeons” “dissociate” into a two-particle in-
teraction,

H =
∑

Hi,i+1, Hi,k =
1
2

δλiλk
δλ′

iλ
′
k

1 ± Pik

2
Aik,

and the problem is reduced to the inversion of a finite ma-
trix.

The above iterations exhibit that at each step two mo-
menta with opposite directions have the same value much
larger than the value of the third momentum (x2, 3 	 x1
in Fig. 3 and x1,2 	 x3 in Fig. 4). This property expresses
the longitudinal momentum conservation within the DLA
accuracy – the sum of all momenta is small compared to
their natural scale.

6 Contributions to Gd,f

The Green function is convoluted over variables βi and he-
licities indices λ′

i with the operator vertex given by the ex-
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pression

Oλ′
1,µ1,λ′

2,µ2,λ′
3,µ3(β 1, β 2, β 3) (16)

= Γλ′
1,µ1,λ′

2,µ2,λ′
3,µ3 β m1

1 β m2
2 β m3

3 δ(β 1 + β 2 + β 3),

where the longitudinal δ-function corresponds to forward
kinematics without momentum transfer. Taking then the
moments with respect variables xi (8) we get the Green
function in themoments’ representation,Gtot

d,f (mi, ni).Note
that the integrals over xi, βi imply positive as well as neg-
ative values of the momenta. The negative values are de-
scribed through the sign variables σi = ±, for example,
the configuration where β1 < 0, β 2, 3 > 0 is associated
with the state (−, +, +) and similarly for xi. The integral
over all sign configurations is recovered by the sum over all
initial σ′

i and final σi values. As a result the Green func-
tion written in terms of the moments takes into account
both signs of βi and xi and does not contain the auxiliary
variables σi,

Gtot
d,f (mi′ , ni)

=
∑

{i′},{i}
δλi1λi2

δλi′
1
λi′

2
δλi3λi′

3

× Gd,f

(
mi′

1
, mi′

2
, mi′

3
; ni1 , ni2 , ni3

)
. (17)

The sum here means the independent symmetrization with
respect the pairs {mi′ , λi′} and {ni, λi} for dabc and an-
tisymmetrization for the fabc structures. The helicities λ′

i
should be convoluted with the tensor Γλ′

i,µi
specifying the

operator vertex (16).
Separating the common factors, the functions Gd,f (mi,

ni) take the form

Gd,f (mi, ni)

=
[
1 + (−1)m+n

]
((−1)n1 ± (−1)n2) (18)

×
[
(−1)m1

m2
± (−1)m2

m1

]
1

m + n + 2
Gd,f (mi, ni),

m ≡ m1 + m2 + m3, n ≡ n1 + n2 + n3,

where + and − stand for d and f structures, respectively,
and the function Gd,f is expressed in terms of the three
contributions considered above,

Gd,f = G
(I)
d,f + G

(II)
d,f + G

(III)
d,f .

The first contribution yields

G
(I)
d,f (mi, ni) =

3
4

α

2νj − α
, (19)

j = m + n3,

while the second one takes the form

G
(II)
d (mi, ni) =

3
8

α

2ν(m − 1) − α

α

2νj − α
, (20)

G
(II)
f = 0. (21)

(G(II)
f vanishes after antisymmetrization over the end

points.) The third contribution with the matrix (15) in-
verted reads

G
(III)
d =

3
8

α

2ν(m − 1) − α

α

2νj − α

α

4ν(m − 1) − 3α
, (22)

G
(III)
f =

3
8

α

2ν(m − 1) − α

α

2νj − α

α

4ν(m − 1) − α
. (23)

7 Asymptotic behavior
of the structure function

The asymptotic behavior of the structure function for
Bjorken variable xB → 0 is determined by the rightmost
singularity in the variable J , which has the meaning of local
spin operator continued to the complex plane. The spin of
the quasipartonic operator is J = m; therefore, one needs
to continue the function Gd,f (mi, ni) to m → 1 formally
keeping the other variables, mi, ni, fixed. Because of the
signature-like factors (−1)m+n the terms with even or odd
m are to be treated separately. Note that in a general LLA
case this continuation is non-trivial since the mixing ma-
trix describing the evolution has a rank depending on J [8].
The explicit form of the DLA solutions (19)– (23) makes
the continuation much more simple and straightforward.
The obtained results show that the anomalous dimension
for the dabc color structure is

γd(J) =
3
4

α

J − 1
. (24)

The main singularity for the fabc structure is actually given
by the pole of the two-gluon state,

γf (J) =
1
2

α

J − 1
. (25)

The contribution of the “developed” three-gluon ladder is
weaker in this channel, γ′

f (J) = γf (J)/2. The contributions
of the other singularities are strictly speaking beyond the
DLA accuracy, since they produce the extra positive powers
of xB.

The DLA anomalous dimension (24) is smaller com-
pared to those which can be derived from the direct solution
of the BFKL equation obtained in [4,6,7,9]. A possible rea-
son for this is that the known BFKL solutions found for the
odderon do not really correspond to quasipartonic opera-
tors of twist 3. In this case the DLA result (24) could indi-
cate the existence of another solution of quasipartonic type.
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